A NEW SYNTHESIS OF 1,2,3-THIADIAZOLO (4,5-d) PYRIMIDINES

Keitaro Senga, Misuzu Ichiba, and Sadao Nishigaki

Pharmaceutical Institute, School of Medicine, Keio University

35, Shinanomachi, Shinjuku-ku, Tokyo 160, Japan

(Received in Japan 14 January 1976; received in UK for publication 24 February 1976)

An isomer of thiadiazolopyrimidines, 1,2,3-thiadiazolo(4,5- \underline{a})pyrimidine, has not been previously reported. Our interest in developing potential nucleic acid enzyme inhibitors prompted us to synthesize a series of this new class of heterocycle combining the features of biologically important 5-mercaptopyrimidines with other fused pyrimidines such as pyrazolo(3,4- \underline{a})pyrimidines or \underline{v} -triazolo(4,5- \underline{a})-pyrimidines.

Stirring of 1 part of 1,3-dimethyl-6-hydrazinouracil (Ia)¹ with 10 parts of thionyl chloride at 0° for 30 min afforded a good yield of 4,6-dimethyl-1,2,3-thiadiazolo $[4,5-\underline{d}]$ pyrimidine-5,7(4H,6H)-dione (III), which was isolated by evaporation of the thionyl chloride in vacuo and addition of water. The structure of III was assigned on the basis of its spectral data [mass: m/e 198, uv $\lambda_{\text{max}}^{\text{EtOH}}$: 214nm $(\log \xi 4.45)$, 242(sh, 3.81), 327(3.79), ir(nujol): 1715cm⁻¹(C=0), nmr(DMSO- \underline{d}_6): δ 3.33(3H, s, N⁶-CH₃), 3.83(3H, s, N⁴-CH₃)] and elemental analysis. In particular, the uv spectrum of III² was quite similar with that of 6,8-dimethylpyridazino [3,4- \underline{d}] pyrimidine-5,7(6H,8H)-dione³. It is interesting to note that the reaction of 1,3-dimethyl-6-(1'-methylhydrazino)uracil (Ib)⁴ with thionyl chloride also gave III under the same condition. In these reactions, presumable intermediates, thiadiazoline-S-oxides (II), could not be isolated.

In contrast with the above results, treatment of 6-hydrazino-1-methyluracil (Ic)⁵ with thionyl chloride at 0° for 30 min yielded the thiadiazoline-S-oxide(IV) [mass: m/e 202, ir(nujol): 1720(C=0), $1100cm^{-1}(S=0)$], however, which was extremely unstable and underwent dehydration to afford 6-methyl-1,2,3-thiadiazolo(4,5- $\frac{1}{2}$) - pyrimidine-5,7(4H,6H)-dione (V) [mass: m/e 184, uv λ $\frac{EtOH}{max}$: 212nm(log ξ 4.23), 250

1130 No. 14

$$\begin{array}{c} \text{CH}_{3}-\text{N} \\ \text{CH}_{3}-\text{N} \\ \text{O} \\ \text{R}^{1} \\ \text{R}^{2} \\ \text{CH}_{3} \\ \text{R}^{2} \\ \text{O} \\ \text{N} \\$$

 $\label{eq:table} \mbox{Preparation of 1,2,3-Thiadiazolo(4,5-\underline{d})} \mbox{pyrimidine Derivatives}$

Compound	Procedure	M.p. (OC)&) (Recrystn. solvent)	Yield(%)
III	Im + SOCI ₂ (0°, 30min)	140-141 (EtOH)	83
	Ib + SOC1 ₂ (0°, 30min)		78
	$V + CH_3I + K_2CO_3$ in		75
	DMF (160°, 2hr)		
IV	Ie + SOCl ₂ (0°, 30min)	<u> </u>	80
V	IV in EtOH (90°, 5min)	235 (dec.) (EtOH)	100
	VIII in 5% NaOH (90°, lmin)		49
VI	Id + SOCl ₂ (0°, 30min)	182-185 (MeOH)	87
AIII	VI + SOC1 ₂ (90°, 15min)	201-203	7 0
	Id + SOC1 ₂ (90°, 15min)	(EtOH)	61

a) All melting points were uncorrected. Satisfactory elemental analyses (C, H, N) were obtained for all products except IV.

b) Not determined.

(3.87), 320(3.83), $ir(nujol): 1720cm^{-1}(C=0)$ by the recrystallization from ethanol. The alkylation of V with methyl iodide led to III.

The reaction of 1-methyl-6-(1'-methylhydrazino)uracil (Id)⁵ with thionyl chloride at 0° for 30 min provided the stable thiadiazoline-S-oxide (VI) [mass: m/e 216, $uv \lambda_{max}^{EtOH}$: 205nm(log £ 4.13), 265(4.25), 343(4.24), ir(nujol): 1715(C=0), $1115cm^{-1}(S=0)$], which upon treatment with thionyl chloride at the elevated temperature resulted in the formation of a new class of mesoionic compound, anhydro-3,6-dimethyl-5-hydroxy-1,2,3-thiadiazolo [4,5-d]pyrimidinium-7(6H)-one hydroxide (VIII) [mass: m/e 198, $uv \lambda_{max}^{EtOH}$: 210nm(log £ 4.05), 242(4.22), 405(3.42), ir(nujol): $1690cm^{-1}(C=0)$, nmr(DMSO-d₆): δ 3.23(3H, s, N⁶-CH₃), 4.27(3H, s, N³-CH₃)]. Compound VIII could also be obtained directly from Id by heating with thionyl chloride, however, an attempt to convert VI to VIII at 100° (dioxane) was shown to be ineffective. This fact suggested that the dehydration of VI to VIII proceeds via Pummerer reaction intermediate (VII). The mesoionic compound VIII was relatively stable in 10% HCl (150° , 30min), wheareas the alkaline treatment of VIII (5% NaCH) immediately gave V.

The synthesis and properties of other 1,2,3-thiadiazolo $(4,5-\underline{d})$ pyrimidines and their mesoionic derivatives are currently under investigation. The biological activity of the compounds described herein will be covered in a separate communication.

REFERENCES

- 1. W. Pfleiderer and K-H. Shundehutte, Ann., 612, 158 (1958).
- 2. The electronical similarity of structures differing only in the substitution of a sulfur atom for an ethylenic group has been well known. For example:
 Y.F. Shealy, J.D. Clayton, and J.A. Montgomery, J. Org. Chem., 27, 2154 (1962).
- 3. W. Pfleiderer and H. Ferch, Ann., 615, 48 (1958). $uv \lambda_{max}^{EtOH}$: 218nm(log 4.35), 240(3.98), 324(3.56).
- 4. F. Yoneda, Y. Sakuma, and S. Matsumoto, Heterocycles, 3, 113 (1975).
- 5. G.D. Daves, R.K. Robins, and C.C. Cheng, <u>J. Am. Chem. Soc.</u>, <u>83</u>, 3904 (1961).